

Do any of these sound familiar

 It worked fine on my machine

 I set that up months ago but can't remember the
details

 I installed so much stuff trying to get it to work I
can't really say which are actually required

 It only works on a linux machine

 I just want to test it without installing

 I want to test/use different versions

 Set-up is too complicated to explain in a paper

Possible solutions

 Hand holding support

 Very detailed documentation

 Virtual machine

 Docker

Virtual Machines

 "is an emulation of a particular computer system"[1]

 Completely separate

 Full set of resources (or as much as possible)

 Current set-up can be saved, copied and shared

 No central repositories of images

 Black-box on how it was set-up

 Full GUI support

 Ideal for working on a host operating system/ controlled set-up

 ex. Word on a Linux or doing a training where everyone has the same
set-up

[1]https://en.wikipedia.org/w/index.php?titlatorle=Virtual_machine&oldid=669500805

How Docker describes itself

 Build, Ship, Run

 An open platform for distributed applications for
developers and sysadmins

 Ship Applications Faster and Easier

 Application Portability and Infrastructure
Flexibility

 Dynamically Update, Change and Scale Apps

Docker

 Uses LinuX Containers (LXC)

 Sharing resources

 Central repositories of images

 Current set-up can be saved, copied and
shared

 Dockerfile showing exact set-up

 Typically no GUI support

 Ideal for running a single application or service

 Many Docker images can be run side by side

Docker compared to VMs

Hardware

Host Operating System

Virtual Machine Monitor

Guest OS Guest OS

Bins/libs

Application A

Bins/libs

Application B

Hardware

Host Operating System

Docker Engine

Bins/libs

Application A

Bins/libs

Application B

Docker ImagesVirtual Machines

http://www.jayway.com/wp-content/uploads/2015/03/vm-vs-docker.png

Docker Linux vs Windows

Hardware

Host Operating System

Docker Engine

Bins/libs

Application A

Bins/libs

Application B

LinuxWindows/ Mac OS

http://www.jayway.com/wp-content/uploads/2015/03/vm-vs-docker.png

Hardware

Host Operating System

Boot2Docker Virtual Engine

Bins/libs

Application A

Bins/libs

Application B

Docker Engine

A few Run Examples

 docker run docker/whalesay:latest
cowsay Hi bioinference group

See: http://docs.docker.com/linux/started/

Parts of docker command

 docker : Starts the docker application

 run : docker command to run an image

 docker/whalesay : image to run

 docker : owner of the repository

 whalesay : image to run

 :latest :tag of image to run (:latest is the default

 cowsay : Application inside the image to run

 Hi Bioinference group: parameters for
application

Separate Run environment

 docker run -i -t --rm docker/whalesay

-i = Keep STDIN open even if not attached

-t = Allocate a pseudo-TTY

--rm = Automatically remove the container when it
exits

 Open a bin/bash terminal

 ls

 Cows directory , cowsay progam

Ipython example

 docker run -d -p 443:8888 -e "PASSWORD=test" --
name iserver ipython/scipyserver

 docker ps

 https://0.0.0.0/tree (use password entered in run
command)

 If using boot2docker

 boot2docker ip (to get ip address vm uses)

 https://*.*.*.*/tree

 https://www.ibm.com/developerworks/community/blogs
/jfp/entry/using_ipython_notebooks_in_docker_contain
ers_on_windows?lang=en

Docker ipython

Ipython continued

 -d

 Run container in background and print container ID

 -p 443:8888

 Publish a container's port(s) to the host

 -e "PASSWORD=test"

 Set environment variables

 --name iserver

 Assign a name to the container

 ipython/scipyserver

 Name of the image

Container

 docker ps

 CONTAINER ID b61cf298f297

 IMAGE ipython/scipyserver

 COMMAND "/notebook.sh"

 CREATED 28 minutes ago

 STATUS Up 28 minutes

 PORTS 0.0.0.0:443->8888/tcp

 NAMES iserver

 Docker ps -a

 docker rm `docker ps --no-trunc -aq`

Container start and start

 At https://0.0.0.0/tree

 New Python 2

 print “hello world”

 Run Button

 Close and reopen Jupiter

 docker stop iserver

 See https://0.0.0.0/tree fails

 docker start iserver

 See https://0.0.0.0/tree saves still there

https://0.0.0.0/tree
https://0.0.0.0/tree
https://0.0.0.0/tree

RStudio

 docker run -d -p 8787:8787 -v
/home/christian/docker/rdata/:/home/rstudio/rdat
a --name=rstudio -e USER=rstudio -e
PASSWORD=rstudio rocker/rstudio

 v maps a directory into the docker container

 http://0.0.0.0:8787/

 Outside changes to ../rdata are visible in rstudio

 see https://github.com/rocker-
org/rocker/wiki/Using-the-RStudio-image

http://0.0.0.0:8787/

Docker RStudio

docker run -it --rm -p 8888:8080 tomcat:8.0

 https://hub.docker.com/_/tomcat/

docker run -d -p 8080:80 -p 8021:21
bgruening/galaxy-stable

Docker downloads the first time

Ship

 https://hub.docker.com

 Images that can be downloaded

 docker pull xyz (gets an image and its parents)

 docker run xyz (pulls if required)

 Many images linked to a github account

 Dockerfile

 Extra files

 Info files

 Automatically built so you know exactly what
you get

https://hub.docker.com/

https://hub.docker.com/explore/

https://hub.docker.com/r/brenninc/calculator/

Build (the BAD WAY)

 docker run -i -t --name=bad ubuntu:14.04

 curl --version

curl: command not found

 sudo apt-get install curl

 curl --version

 curl 7.35.0

 exit

 docker run -i -t --rm ubuntu:14.04

 curl --version

curl: command not found

 docker start -i bad

 curl --version

 curl 7.35.0

Build (The bad way)

 These images can be uploaded to docker hub

 No Dockerfile will be available

 No Automatic build

 Would you trust someone else’s black box?

Build using Docker files

 Saved in a text file called Dockerfile

 Exact record of how the system was built

 Dockerfile can built upon other docker images

 Built up in layers

 Max 128 layers

 Each command in a Dockerfile is a layer

 Docker file allow for “automatic builds” on
Docker hub

 Docker files typically shared via github

Calculator Example

 docker run –rm brenninc/calculator 4+5*2

 4+5*2 = 14

 docker run –rm brenninc/calculator

 1 + 2 * 3 = 7

Dockerfile instructions
 FROM

 MAINTAINER

 LABEL

 RUN

 ENTRYPOINT

 CMD

 EXPOSE

 ENV

 COPY

 ADD

 VOLUME

 USER

 WORKDIR

 ONBUILD

From
 Base or parent image

 Can be an operating system

 FROM ubuntu:14.04

 FROM centos

 FROM febora

 Only Linux family operating system

 Can be a base image

 ipython/scipyserver

 ipython/scipystack

 ipython/ipython:3.x

 …..

 Can be scratch

 Root of operating system images

MAINTAINER

 A way of signalling who is responsible for the
image

 MAINTAINER Christian Brenninkmeijer
<Christian.Brenninkmeijer@manchester.ac.uk>

 MAINTAINER IPython Project <ipython-
dev@scipy.org>

 Does count towards the 128 layer limit

LABEL
 key-value paired metadata

 LABEL com.example.label-with-value="foo"

 LABEL version="1.0"

 LABEL description="This text illustrates \

 that label-values can span multiple lines."

 Exposed vai

 docker inspect image_name

 Includes other metadata

 Includes info from MAINTAINER

RUN

 Executes command on base image and saves a
new image

 apt-get Install stuff

 Download stuff

 Unzip stuff

 Create directories

 Run setup and config scripts

 Delete temporary files

Run examples

 RUN apt-get update && apt-get install -y python

 RUN curl -L http://downloads.sourceforge.net/project/libpng/libpng16/older-
releases/1.6.7/libpng-1.6.7.tar.gz > libpng-1.6.7.tar.gz && \

tar -xzf libpng-1.6.7.tar.gz &&

rm libpng-1.6.7.tar.gz && \

mkdir libpng && \

cd libpng-1.6.7 && \

./configure --prefix=/libpng && \

make && \

make install && \

cd / && \

rm -r /libpng-1.6.7

Run notes

 Multiple command can be combined

 These then count as one layer (out of 128 max)

 Temporary files must be removed in same layer
as used or they stay in the image

 Next image builds on previous

 cd (change directory) only effects that layer

 Each new layer starts in home

 export only effects that layer

 See ENV command

ENTRYPOINT and CMD

 Command to run then the image is run

 There can only be one of each

 Earlier ones are ignored

 Both are optional and independent

 Various different formats possible

 Example:

ENTRYPOINT ["python","calculator.py"]

CMD ["1","+","2","*","3"]

 Runs "python calculator.py 1+2*3

ENTRYPOINT

 Command part expected to be used every time

 Makes the image an executable file

 If docker run is provided arguments the
ENTRYPOINT commands are still included

 Can be ignored with the docker run flag --
entrypoint

CMD

 Default arguments for Docker run

 Ignored if any arguments are provided when
docker images is run

docker run –rm brenninc/calculator 4+5*2

4+5*2 = 14

docker run –rm brenninc/calculator

1 + 2 * 3 = 7

EXPOSE

 “informs Docker that the container will listen on
the specified network ports at runtime”

 Connects ports of any application/ service to be
run to the outside of the docker

 Note requires the -p flag at runtime to expose it
from docker to the host

ENV

 Sets Key value environment variable

 Persist on all future layers and runtime

 Can be overwritten

 ENV myName John Doe

 ENV myDog Rex The Dog

 ENV myCat fluffy

 ENV myName="John Doe" myDog=Rex\ The\ Dog \

 myCat=fluffy

COPY

 COPY source destination

 Copies local files or directories into the docker
image

 Source must be in the same context as the
Dockerfile

 Files in the same context as the Docker file are only
available in the image if copied in

 Multiple sources can be specified but then
destination must be a folder

 COPY calculator.py calculator.py

ADD

 Similar to COPY but with extra functionality

 Docker recommends using COPY when possible

 If source is a local tar archive in a recognized
compression format (identity, gzip, bzip2 or xz)
then it is unpacked as a directory.

 ADD can add data from URLS

 Never unpacked

VOLUME

 Creates a mount point

 Creates a directory in /var/lib/docker/volumes/

 With a random name

 Used by containers that save data

 Example Ipython

 Similar to the -v flag in docker run image

 Directory created when a container is created
are not removed even if the container is

USER

 Allow you to run image as other than root user

 User must be created

WORKDIR

 Sets the working directory

 Should be an absolute directory

 Absolute within docker image not the host

 Unlike cd persists between layers

ONBUILD

 Used in images that will be parents to other images

 Adds instructions to run then child image builds

 example

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

ONBUILD COPY Gemfile /usr/src/app/

ONBUILD COPY Gemfile.lock /usr/src/app/

ONBUILD RUN bundle install

ONBUILD COPY . /usr/src/ap

Calculator Dockerfile

 FROM ubuntu:14.04

 MAINTAINER Christian Brenninkmeijer
<Christian.Brenninkmeijer@manchester.ac.uk>

 LABEL "description"="An example docker app using
python as a calculator"

 #Install python via apt-get

 RUN apt-get update && apt-get install -y python

 #copy in the code

 COPY calculator.py calculator.py

 ENTRYPOINT ["python","calculator.py"]

 CMD ["1","+","2","*","3"]

Calculator.py

 import parser

 import sys

 command = " ".join(sys.argv[1:])

 st = parser.expr(command)

 code = st.compile('file.py')

 print command,"=",eval(code)

Build Calculator

 docker build -t brenninc/calculator .

-t provides a tag (name) for your image

 Docker will reuse existing images layers
wherever this is possible

 Automatically detecting the first layer that
changed

 Including if a file copied in has changed

 All subsequent layers are built

SHIP Calculator

 Source file uploaded
to:https://github.com/brenninc/calculator

 Dockerfile

 Calculator.py

 Linked
to:https://hub.docker.com/r/brenninc/calculator/

 Automatically built image (by docker hub)

 docker pull brenninc/calculator

https://github.com/brenninc/calculator
https://hub.docker.com/r/brenninc/calculator/

