

Do any of these sound familiar

 It worked fine on my machine

 I set that up months ago but can't remember the
details

 I installed so much stuff trying to get it to work I
can't really say which are actually required

 It only works on a linux machine

 I just want to test it without installing

 I want to test/use different versions

 Set-up is too complicated to explain in a paper

Possible solutions

 Hand holding support

 Very detailed documentation

 Virtual machine

 Docker

Virtual Machines

 "is an emulation of a particular computer system"[1]

 Completely separate

 Full set of resources (or as much as possible)

 Current set-up can be saved, copied and shared

 No central repositories of images

 Black-box on how it was set-up

 Full GUI support

 Ideal for working on a host operating system/ controlled set-up

 ex. Word on a Linux or doing a training where everyone has the same
set-up

[1]https://en.wikipedia.org/w/index.php?titlatorle=Virtual_machine&oldid=669500805

How Docker describes itself

 Build, Ship, Run

 An open platform for distributed applications for
developers and sysadmins

 Ship Applications Faster and Easier

 Application Portability and Infrastructure
Flexibility

 Dynamically Update, Change and Scale Apps

Docker

 Uses LinuX Containers (LXC)

 Sharing resources

 Central repositories of images

 Current set-up can be saved, copied and
shared

 Dockerfile showing exact set-up

 Typically no GUI support

 Ideal for running a single application or service

 Many Docker images can be run side by side

Docker compared to VMs

Hardware

Host Operating System

Virtual Machine Monitor

Guest OS Guest OS

Bins/libs

Application A

Bins/libs

Application B

Hardware

Host Operating System

Docker Engine

Bins/libs

Application A

Bins/libs

Application B

Docker ImagesVirtual Machines

http://www.jayway.com/wp-content/uploads/2015/03/vm-vs-docker.png

Docker Linux vs Windows

Hardware

Host Operating System

Docker Engine

Bins/libs

Application A

Bins/libs

Application B

LinuxWindows/ Mac OS

http://www.jayway.com/wp-content/uploads/2015/03/vm-vs-docker.png

Hardware

Host Operating System

Boot2Docker Virtual Engine

Bins/libs

Application A

Bins/libs

Application B

Docker Engine

A few Run Examples

 docker run docker/whalesay:latest
cowsay Hi bioinference group

See: http://docs.docker.com/linux/started/

Parts of docker command

 docker : Starts the docker application

 run : docker command to run an image

 docker/whalesay : image to run

 docker : owner of the repository

 whalesay : image to run

 :latest :tag of image to run (:latest is the default

 cowsay : Application inside the image to run

 Hi Bioinference group: parameters for
application

Separate Run environment

 docker run -i -t --rm docker/whalesay

-i = Keep STDIN open even if not attached

-t = Allocate a pseudo-TTY

--rm = Automatically remove the container when it
exits

 Open a bin/bash terminal

 ls

 Cows directory , cowsay progam

Ipython example

 docker run -d -p 443:8888 -e "PASSWORD=test" --
name iserver ipython/scipyserver

 docker ps

 https://0.0.0.0/tree (use password entered in run
command)

 If using boot2docker

 boot2docker ip (to get ip address vm uses)

 https://*.*.*.*/tree

 https://www.ibm.com/developerworks/community/blogs
/jfp/entry/using_ipython_notebooks_in_docker_contain
ers_on_windows?lang=en

Docker ipython

Ipython continued

 -d

 Run container in background and print container ID

 -p 443:8888

 Publish a container's port(s) to the host

 -e "PASSWORD=test"

 Set environment variables

 --name iserver

 Assign a name to the container

 ipython/scipyserver

 Name of the image

Container

 docker ps

 CONTAINER ID b61cf298f297

 IMAGE ipython/scipyserver

 COMMAND "/notebook.sh"

 CREATED 28 minutes ago

 STATUS Up 28 minutes

 PORTS 0.0.0.0:443->8888/tcp

 NAMES iserver

 Docker ps -a

 docker rm `docker ps --no-trunc -aq`

Container start and start

 At https://0.0.0.0/tree

 New Python 2

 print “hello world”

 Run Button

 Close and reopen Jupiter

 docker stop iserver

 See https://0.0.0.0/tree fails

 docker start iserver

 See https://0.0.0.0/tree saves still there

https://0.0.0.0/tree
https://0.0.0.0/tree
https://0.0.0.0/tree

RStudio

 docker run -d -p 8787:8787 -v
/home/christian/docker/rdata/:/home/rstudio/rdat
a --name=rstudio -e USER=rstudio -e
PASSWORD=rstudio rocker/rstudio

 v maps a directory into the docker container

 http://0.0.0.0:8787/

 Outside changes to ../rdata are visible in rstudio

 see https://github.com/rocker-
org/rocker/wiki/Using-the-RStudio-image

http://0.0.0.0:8787/

Docker RStudio

docker run -it --rm -p 8888:8080 tomcat:8.0

 https://hub.docker.com/_/tomcat/

docker run -d -p 8080:80 -p 8021:21
bgruening/galaxy-stable

Docker downloads the first time

Ship

 https://hub.docker.com

 Images that can be downloaded

 docker pull xyz (gets an image and its parents)

 docker run xyz (pulls if required)

 Many images linked to a github account

 Dockerfile

 Extra files

 Info files

 Automatically built so you know exactly what
you get

https://hub.docker.com/

https://hub.docker.com/explore/

https://hub.docker.com/r/brenninc/calculator/

Build (the BAD WAY)

 docker run -i -t --name=bad ubuntu:14.04

 curl --version

curl: command not found

 sudo apt-get install curl

 curl --version

 curl 7.35.0

 exit

 docker run -i -t --rm ubuntu:14.04

 curl --version

curl: command not found

 docker start -i bad

 curl --version

 curl 7.35.0

Build (The bad way)

 These images can be uploaded to docker hub

 No Dockerfile will be available

 No Automatic build

 Would you trust someone else’s black box?

Build using Docker files

 Saved in a text file called Dockerfile

 Exact record of how the system was built

 Dockerfile can built upon other docker images

 Built up in layers

 Max 128 layers

 Each command in a Dockerfile is a layer

 Docker file allow for “automatic builds” on
Docker hub

 Docker files typically shared via github

Calculator Example

 docker run –rm brenninc/calculator 4+5*2

 4+5*2 = 14

 docker run –rm brenninc/calculator

 1 + 2 * 3 = 7

Dockerfile instructions
 FROM

 MAINTAINER

 LABEL

 RUN

 ENTRYPOINT

 CMD

 EXPOSE

 ENV

 COPY

 ADD

 VOLUME

 USER

 WORKDIR

 ONBUILD

From
 Base or parent image

 Can be an operating system

 FROM ubuntu:14.04

 FROM centos

 FROM febora

 Only Linux family operating system

 Can be a base image

 ipython/scipyserver

 ipython/scipystack

 ipython/ipython:3.x

 …..

 Can be scratch

 Root of operating system images

MAINTAINER

 A way of signalling who is responsible for the
image

 MAINTAINER Christian Brenninkmeijer
<Christian.Brenninkmeijer@manchester.ac.uk>

 MAINTAINER IPython Project <ipython-
dev@scipy.org>

 Does count towards the 128 layer limit

LABEL
 key-value paired metadata

 LABEL com.example.label-with-value="foo"

 LABEL version="1.0"

 LABEL description="This text illustrates \

 that label-values can span multiple lines."

 Exposed vai

 docker inspect image_name

 Includes other metadata

 Includes info from MAINTAINER

RUN

 Executes command on base image and saves a
new image

 apt-get Install stuff

 Download stuff

 Unzip stuff

 Create directories

 Run setup and config scripts

 Delete temporary files

Run examples

 RUN apt-get update && apt-get install -y python

 RUN curl -L http://downloads.sourceforge.net/project/libpng/libpng16/older-
releases/1.6.7/libpng-1.6.7.tar.gz > libpng-1.6.7.tar.gz && \

tar -xzf libpng-1.6.7.tar.gz &&

rm libpng-1.6.7.tar.gz && \

mkdir libpng && \

cd libpng-1.6.7 && \

./configure --prefix=/libpng && \

make && \

make install && \

cd / && \

rm -r /libpng-1.6.7

Run notes

 Multiple command can be combined

 These then count as one layer (out of 128 max)

 Temporary files must be removed in same layer
as used or they stay in the image

 Next image builds on previous

 cd (change directory) only effects that layer

 Each new layer starts in home

 export only effects that layer

 See ENV command

ENTRYPOINT and CMD

 Command to run then the image is run

 There can only be one of each

 Earlier ones are ignored

 Both are optional and independent

 Various different formats possible

 Example:

ENTRYPOINT ["python","calculator.py"]

CMD ["1","+","2","*","3"]

 Runs "python calculator.py 1+2*3

ENTRYPOINT

 Command part expected to be used every time

 Makes the image an executable file

 If docker run is provided arguments the
ENTRYPOINT commands are still included

 Can be ignored with the docker run flag --
entrypoint

CMD

 Default arguments for Docker run

 Ignored if any arguments are provided when
docker images is run

docker run –rm brenninc/calculator 4+5*2

4+5*2 = 14

docker run –rm brenninc/calculator

1 + 2 * 3 = 7

EXPOSE

 “informs Docker that the container will listen on
the specified network ports at runtime”

 Connects ports of any application/ service to be
run to the outside of the docker

 Note requires the -p flag at runtime to expose it
from docker to the host

ENV

 Sets Key value environment variable

 Persist on all future layers and runtime

 Can be overwritten

 ENV myName John Doe

 ENV myDog Rex The Dog

 ENV myCat fluffy

 ENV myName="John Doe" myDog=Rex\ The\ Dog \

 myCat=fluffy

COPY

 COPY source destination

 Copies local files or directories into the docker
image

 Source must be in the same context as the
Dockerfile

 Files in the same context as the Docker file are only
available in the image if copied in

 Multiple sources can be specified but then
destination must be a folder

 COPY calculator.py calculator.py

ADD

 Similar to COPY but with extra functionality

 Docker recommends using COPY when possible

 If source is a local tar archive in a recognized
compression format (identity, gzip, bzip2 or xz)
then it is unpacked as a directory.

 ADD can add data from URLS

 Never unpacked

VOLUME

 Creates a mount point

 Creates a directory in /var/lib/docker/volumes/

 With a random name

 Used by containers that save data

 Example Ipython

 Similar to the -v flag in docker run image

 Directory created when a container is created
are not removed even if the container is

USER

 Allow you to run image as other than root user

 User must be created

WORKDIR

 Sets the working directory

 Should be an absolute directory

 Absolute within docker image not the host

 Unlike cd persists between layers

ONBUILD

 Used in images that will be parents to other images

 Adds instructions to run then child image builds

 example

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

ONBUILD COPY Gemfile /usr/src/app/

ONBUILD COPY Gemfile.lock /usr/src/app/

ONBUILD RUN bundle install

ONBUILD COPY . /usr/src/ap

Calculator Dockerfile

 FROM ubuntu:14.04

 MAINTAINER Christian Brenninkmeijer
<Christian.Brenninkmeijer@manchester.ac.uk>

 LABEL "description"="An example docker app using
python as a calculator"

 #Install python via apt-get

 RUN apt-get update && apt-get install -y python

 #copy in the code

 COPY calculator.py calculator.py

 ENTRYPOINT ["python","calculator.py"]

 CMD ["1","+","2","*","3"]

Calculator.py

 import parser

 import sys

 command = " ".join(sys.argv[1:])

 st = parser.expr(command)

 code = st.compile('file.py')

 print command,"=",eval(code)

Build Calculator

 docker build -t brenninc/calculator .

-t provides a tag (name) for your image

 Docker will reuse existing images layers
wherever this is possible

 Automatically detecting the first layer that
changed

 Including if a file copied in has changed

 All subsequent layers are built

SHIP Calculator

 Source file uploaded
to:https://github.com/brenninc/calculator

 Dockerfile

 Calculator.py

 Linked
to:https://hub.docker.com/r/brenninc/calculator/

 Automatically built image (by docker hub)

 docker pull brenninc/calculator

https://github.com/brenninc/calculator
https://hub.docker.com/r/brenninc/calculator/

